Midterm Exam

(February 15th @ 7:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (19 PTS)

• Compute the result of the following operations. The operands are signed fixed-point numbers. The result must be a signed fixed-point number. For the division, use x = 5 fractional bits.

intelligible in the control of the c		
1.0111 +	1.010110 -	01.11111 +
1.101010	1000.0101	0.10011
1.01101 ×	0.111 ×	01.011 ÷
10.101	1.0101	1.011

PROBLEM 2 (11 PTS)

 Represent these numbers in Fixed Point Arithmetic (signed numbers). Use the FX format [8 4]. Truncate (the LSB) and perform Saturation when required.

✓ -33.375 ✓ 17.875

Complete the table for the following fixed-point formats (signed numbers): (3 pts.)

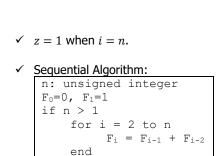
Integer bits	Fractional Bits	FX Format	Range	Resolution
6	4			

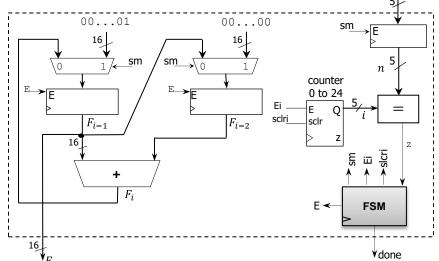
• Given the 32-bit floating-point number: ECE4710A. Complete the bits in the fields and the significand's FX format: (3 pts.)

PROBLEM 3 (40 PTS)

• Perform the following 32-bit floating point operations. For fixed-point division, use 4 fractional bits. Truncate the result when required. Show your work: <a href="https://example.com/how-point-p

✓ 4F480000 + D0A90000 ✓	C1500000 - C36A0000	✓ FABC0000 × 80400000	✓ 7BB80000 ÷ C9400000
-------------------------	---------------------	-----------------------	-----------------------

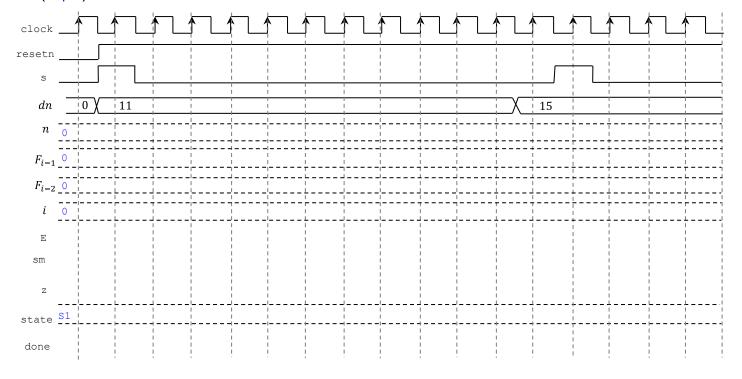

PROBLEM 4 (30 PTS)


return F_n

• **Fibonacci numbers Computation**: This circuit reads an unsigned number (n > 1) and generates F_n :

$$F_n = F_{n-1} + F_{n-2}$$
, $F_0 = 0$, $F_1 = 1$

- The digital system is depicted below (FSM + Datapath).
 - ✓ Input Data dn (1 < dn < 25). Output Data: F_n (16-bit result; n < 25 as F_{24} = 46368)



dn

- Sketch the Finite State Machine diagram (in ASM form) given the sequential algorithm. (15 pts.)
 - ✓ The process begins when the s signal is asserted, at this moment we capture dn on register n. At the same time, the registers F_{i-1} and F_{i-2} are initialized with 1 and 0 respectively. Then, the process continues by updating F_{i-1} and F_{i-2} , and it is concluded when i = n. The signal done is asserted when the result is ready and appears on output F_n .
 - Note that the iteration index i index must start at i = 2.

• Complete the timing diagram. n is provided as an unsigned decimal. You can provide F_{i-1} , F_{i-2} , and i as unsigned decimals. (15 pts.)

2